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The electromagnetic field near a dielectric half-space

Adam D Helfer and Andrew S I D Lang†
Department of Mathematics, University of Missouri, Columbia, MO 65211, USA

Received 21 October 1998

Abstract. We compute the expectations of the squares of the electric and magnetic fields in the
vacuum region outside a half-space filled with a uniform non-dispersive dielectric. This gives
predictions for the Casimir–Polder force on an atom in the ‘retarded’ regime near a dielectric.
We also find a positive energy density due to the electromagnetic field. This would lead, in the
case of two parallel dielectric half-spaces, to a positive, separation-independent contribution to
the energy density, besides the negative, separation-dependent Casimir energy. Rough estimates
suggest that for a very wide range of cases, perhaps including all realizable ones, the total energy
density between the half-spaces is positive.

1. Introduction

In this paper, we investigate the quantum electromagnetic field in the vacuum region outside
a half-space filled with a uniform, non-dispersive dielectric. We compute the expectations of
the squares of the electric and magnetic fields in this region. We have two motivations for this.

First, the problem is natural in the study of quantum optics. Indeed, other workers have
already investigated some aspects of this situation, for example, the effects of a nearby dielectric
on atomic transition rates (see, e.g., Khosravi and Loudon 1991, 1992). Here we compute the
expectations of the squares of the electric and magnetic fields, thus providing predictions of the
Casimir–Polder force on an (electrically or magnetically) polarizable atom near the dielectric.
These predictions test the ultraviolet renormalization of the the theory at a deeper level than
do the transition-rate ones.

Our main motivation, however, comes from the hypothesized uses of negative energy
densities to fuel exotic general-relativistic and thermodynamic effects. Serious workers have
considered the possibility that negative energy densities might give rise to ‘worm holes’,
‘warp drives’ and ‘time machines’. Such predictions depend on being able to generate
persistent negative energy densities. At present, the only way that this might be achieved
within reasonably well-understood physics is via Casimir-type effects. In the original Casimir
(1948) effect, for example, the energy density due to the quantum electromagnetic field between
two perfect parallel plane conductors is predicted to be negative. It should immediately be
remarked that this negative energy density has never been directly observed‡. Still, it is this

† Present address: Department of Mathematics, Oral Roberts University, 7777 South Lewis Avenue, Tulsa, OK
74171-0001, USA.
‡ Laboratory experiments measure the force between the plates, that is, the componentT̂zz of the stress-energy
(Sparnaay 1957, 1958, Lamoreaux 1997, Bordaget al 1998). The energy density iŝTtt . These two operators do not
commute. There is a connection between them, in that the long-time average of the force is minus the gradient of the
energy, but present experiments seem far from being able to measureT̂t t . This operator may as a matter of principle
not be directly observable; see Helfer 1998.
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prediction which has generated an enormous amount of theoretical work, because the possible
consequences are so spectacular.

We wanted to know what would happen to the prediction of negative energy densities
if the plates were no longer idealized as perfect conductors. A realistic treatment of this
would require a theory of the quantum electromagnetic field in inhomogeneous absorptive
and dispersive media at finite temperature. Such theories are only now under development
(see, e.g., Matloobet al 1995), so it seems wise to consider as a first step the case of a non-
absorptive, non-dispersive medium at zero temperature. Thus we shall consider the case of a
half-space filled with a material of (frequency-independent) dielectric constantε. While the
case of a perfect conductor is formally the limitε ↑ ∞ of this, an imperfect conductor is not
well represented by such a model withε finite. So we shall not be able to make any positive
predictions about the behaviour of real conductors.

Still, our results are strong enough to bear on the case of conductors. We shall find
that, for dielectrics, finite-ε effectscannotbe neglected, especially in computations of the
electromagnetic contribution to the energy density. In the case of two parallel half-spaces, these
finite-ε corrections do not alter the attractive nature of the Casimir force, but may contribute
a positive, separation-independent energy density which dominates the negative, separation-
dependent, Casimir energy density. This strongly suggests that only after a careful treatment
of the physics of real conductors will we know whether the perfect-conductor idealization is
adequate for computing the energy density in such cases.

It is not easy to say accurately and briefly why a finite dielectric constant should modify
the energy density to this degree, because the physics is non-local and depends on quantum
interference. The presence of a polarizable medium in a region alters the field operators, by
causing reflection and refraction of modes at the boundary. If the geometry is particularly
simple (a plane interface) and the reflection sufficiently idealized (a perfect conductor), one
has a great deal of cancellation. Small deviations from these idealizations can potentially lead
to large effects. This is beacuse the energy density and the squares of the field strengths are
defined by ultraviolet-divergent integrals (and must be renormalized).

To explain the situation more quantitativley, we first review some aspects of the Casimir
effect, and then discuss the idealizations that have been made and how they might be expected
to be modified in a more realistic treatment.

Between two perfect parallel plane conductors, one finds that the renormalized energy
density is given by

〈T̂00〉ren= 1

2
〈Ê2 + B̂2〉ren= − π

2h̄c

720l4
(1)

wherel is the distance between the plates. That this is independent of position can be shown on
invariance grounds (and relies on the ideal, perfect-conductor boundary conditions). However,
the electric and magnetic fields arenotposition-independent; one finds

〈Ê2〉ren= − π
2h̄c

720l4
+
π2h̄c

16l4
3− 2 sin2(πz/l)

sin4(πz/l)
(2)

〈B̂2〉ren= − π
2h̄c

720l4
− π

2h̄c

16l4
3− 2 sin2(πz/l)

sin4(πz/l)
(3)

at distancez from one plate. Near one plate, asz ↓ 0, we find the asymptotic forms

〈Ê2〉ren∼ +
3h̄c

16π2z4
(4)

〈B̂2〉ren∼ − 3h̄c

16π2z4
. (5)
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In other words, the renormalized expectations ofÊ2 and B̂2 both diverge near a perfectly
conducting plate, but there is a perfect cancellation between the divergent terms, leaving only
a finite result.

Several commments on this are in order. First, the negative expectation ofB̂2 occurs
because it is a renormalized quantity, and means that the fluctuations ofB̂ are less than those
of the Minkowski vacuum. Second, the divergences of〈Ê2〉ren and〈B̂2〉ren asz ↓ 0 are not
expected to be physical, but rather arise from the idealized boundary conditions used. A real
conductor would not be well approximated by a perfect conductor within atomic distances,
and probably not within its plasma wavelength. Thus the expressions (2)–(5) are really only
expected to be valid when one is sufficiently far from the conductor to neglect atomic structure
and finite skin depth.

Still, one is led to ask what would happen if the antisymmetry between the divergent parts
of 〈Ê2〉ren and〈B̂2〉ren could be disturbed. Could one produce energy densities much greater
in magnitude than the Casimir expression (1)? A natural way to try to do this is to replace the
perfect conductor by a dielectric, and this is what we have done here. Of course, our model is
not expected to be accurate within atomic distances or even scales of the order of a skin depth.
Still, we shall be able to draw some interesting conclusions.

We are able to compute〈Ê2
z 〉ren, 〈Ê2

T〉ren, 〈B̂2
z 〉ren and〈B̂2

T〉ren explicitly, as functions of the
distancez from the dielectric boundary and of the dielectric susceptibilityχ . The expressions
have the form

ηh̄c/z4 (6)

where theηs are transcendental functions ofχ . (See equations (28), (30), (32) and (34).) We
find in particular that the energy density in the vacuum half-space has the formηρh̄c/z

4, where
ηρ is a positive function ofχ . This means that the total energy per unit surface area of the
electromagnetic field on the vacuum side,∫ ∞

0
(ηρh̄c/z

4) dz (7)

is divergent. This is unphysical and again can be ascribed to the oversimplification of our
model, where all modes, of whatever frequency, are equally affected by the dielectric. In a
more realistic model, the dielectric’s atomic structure would be taken into account. This would
mean that at small distances (of the order of the skin depth probably and at the atomic scale
certainly) the energy density would not be given byηρh̄c/z4, but by some other, presumably
finite, expression. Correspondingly, we ought really to think of our theory as an effective field
theory valid only up to frequencies corresponding to wavelengths of order the skin depth or
so.

In the next section, we outline the technical details of the computations. In section 3, we
summarize the asymptotic behaviours of the squares of theηs for the squares of the fields, and
present the graphs of these functions. Section 4 summarizes the behaviour of the expectation of
the stress tensor. Section 5 contains discussions of the significance of our results, and section 6
recapitualiates the main conclusions.

2. The computation

2.1. The orthonormal eigenmodes

The case of a half-space uniformly filled with a dielectric has been studied earlier, and we shall
use the orthonormal eigenmodes as given by Carniglia and Mandel (1971).
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We shall take thez-axis to be normal to the interface, withz increasing in the vacuum
region. We take advantage of the translational symmetries in time and in thexT = (x, y)

directions to resolve all modes by Fourier transforms in these variables, with Fourier transform
variablesω andkT. These Fourier transform variables thus retain their senses on both sides of
the interface.

The dielectric constant isε = 1+χ . The wavenumber in thez-direction isk in the vacuum
andk̃ in the dielectric. Thus we have

k̃2 + k2
T = εω2 for z < 0 (dielectric) (8)

k2 + k2
T = ω2 for z > 0 (vacuum). (9)

In what followsk̂T andêz are the unit vectors in thekT- andz-directions. In later sections, hats
will indicate field operators, too, but no confusion should arise.

We shall only need the modes on the vacuum side of the interface. The transverse electric
component of the ‘electric’ field mode (whereE is normal to the plane of incidence) incident
from the left (̃k > 0), is

EE
k̃kT
= (2ε)−1/2 2k̃

k̃ + k
eikzeikT·xT(k̂T × êz). (10)

The transverse electric component of the ‘magnetic’ field mode incident from the left (k̃ > 0)
is

EM
k̃kT
= (
√

2ω)−1 2k̃

k̃ + εk
eikzeikT·xT(kTêz − kk̂T). (11)

The transverse electric component of the ‘electric’ field mode incident from the right (k > 0)
is

EE
kkT
=
√

2
−1

(
e−ikz +

k − k̃
k + k̃

eikz

)
eikT·xT(k̂T × êz). (12)

The transverse electric component of the ‘magnetic’ field mode incident from the right (k > 0)
is

EM
kkT
= (
√

2ω)−1

(
e−ikz(kTêz + kk̂T) +

εk − k̃
εk + k̃

eikz(kTêz − kk̂T)

)
eikT·xT . (13)

The transverse magnetic component of the ‘electric’ field mode incident from the left (k̃ > 0)
is

BE
k̃kT
= (2εω2)−1/2 2k̃

k̃ + k
eikzeikT·xT(kk̂T − kTêz). (14)

The transverse magnetic component of the ‘magnetic’ field mode incident from the left (k̃ > 0)
is

BM
k̃kT
= 2−1/2 2k̃

k̃ + εk
eikzeikT·xT(k̂T × êz). (15)

The transverse magnetic component of the ‘electric’ field mode incident from the right (k > 0)
is

BE
kkT
= −2−1/2ω−1

(
e−ikz(kk̂T + kTêz)− k − k̃

k + k̃
eikz(kk̂T − kTêz)

)
eikT·xT . (16)
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The transverse magnetic component of the ‘magnetic’ field mode incident from the right
(k > 0) is

BM
kkT
= 2−1/2

(
e−ikz +

εk − k̃
k̃ + εk

eikz

)
eikT·xT(k̂T × êz). (17)

The electric and magnetic field operators are thus given by

Ê(x, t) = 1

(2π)3

∫
k̃>0

d3k̃
∑
λ=E,M

√
ω(âλ

k̃kT
Eλ
k̃kT

e−iωt + h.c.)

+
1

(2π)3

∫
k>0

d3k
∑
λ=E,M

√
ω(âλkkT

EλkkT
e−iωt + h.c.) (18)

and

B̂(x, t) = 1

(2π)3

∫
k̃>0

d3k̃
∑
λ=E,M

√
ω(âλ

k̃kT
Bλ
k̃kT

e−iωt + h.c.)

+
1

(2π)3

∫
k>0

d3k
∑
λ=E,M

√
ω(âλkkT

BλkkT
e−iωt + h.c.) (19)

where the creation and annihilation operators satisfy the commutation relations

[âλ
′
k̃′k′T
, âλ

∗
k̃kT

] = 4π3h̄δλλ′δ(k̃ − k̃′)δ(kT − k′T) (20)

and

[âλ
′
k′k′T
, âλ

∗
kkT

] = 4π3h̄δλλ′δ(k − k′)δ(kT − k′T). (21)

2.2. Computation of̂E2
z

We shall outline the computation of̂E2
z . Computations of the squares of the other field

components follow the same pattern.
We use a standard point-splitting in imaginary time, and set iτ = t ′ − t . Then we have

〈Ê2
z 〉 =

1

(2π)3

∫
k̃>0

d3k̃
k2

T

2ω

(
2k̃

k̃ + εk

)(
2k̃

k̃ + εk

)∗
ei(k−k∗)ze−ωτ

+
1

(2π)3

∫
k>0

d3k
k2

T

2ω

(
e−ikz +

εk − k̃
εk + k̃

eikz

)(
e−ikz +

εk − k̃
εk + k̃

eikz

)∗
e−ωτ . (22)

We rewrite the integral over̃k > 0 as an integral overk > 0 (representing plane waves) plus
an integral over 0< κ < ω

√
χ (representing evanescent waves):

〈Ê2
z 〉 =

1

(2π)2

∫ ∞
0

dω
∫ ω

0
dk (ω2 − k2)

(
1 +

εk − k̃
εk + k̃

cos 2kz

)
e−ωτ

+
1

(2π)2

∫ ∞
0

dω
∫ ω
√
χ

0
dκ(ω2 + κ2)

2εκk̃

k̃2 + ε2κ2
e−2κze−ωτ (23)

where we have used the relationships

k2
T =

{
ω2 + κ2 for k̃ < ω

√
χ

ω2 − k2 for k̃ > ω
√
χ

(24)

and have performed the simple polar angle integration.
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Changing variablesk = ωξ in the first integral andκ = ω√χξ in the second integral we
obtain

〈Ê2
z 〉 =

1

(2π)2

∫ ∞
0

dω
∫ 1

0
dξ ω3(1− ξ2)

(
1 +

εξ −
√
χ + ξ2

εξ +
√
χ + ξ2

cos 2ωξz

)
e−ωτ

+
1

(2π)2

∫ ∞
0

dω
∫ 1

0
dξ ω3(1 +

√
χξ2)

2εξ
√
χ + ξ2

1 + (ε2 − 1)ξ2
e−2ω

√
χξze−ωτ . (25)

Integrating overω gives

〈Ê2
z 〉 =

h̄c

(2π)2

∫ 1

0

[
6

1− ξ2

τ 4
+ 6(1− ξ2)

εξ −
√
χ + ξ2

εξ +
√
χ + ξ2

16z4ξ4 − 24z2ξ2τ 2 + τ 4

(4z2ξ2 + τ 2)4

+
12ε
√
χξ(1 +χξ2)

√
1− ξ2

(1 + (ε2 − 1)ξ2)(2z
√
χξ + τ)4

]
dξ. (26)

Thus we have reduced the problem of finding the expectation value of the square of thez-
component of the electric field to a one-dimensional integral. The integral can be evaluated
using contour integration in the complex plane and by exploiting Cauchy’s residue theorem.
After integrating and extensive algebra we obtain the following formally divergent expression
for the expectation value:

〈Ê2
z 〉 = lim

τ→0

(
h̄c

π2τ 4
+

h̄c

(2π)2z4

[
1

16χ3/2

(
2
√
χ(6ε2 − 3ε3/2 − 2χ)

+6ε(1− 2ε2 + 2χ) ln(
√
ε +
√
χ)

+
6ε2(ε2 − χ − 1)√

ε2 − 1
ln

(√
ε + 1− 1√
ε + 1 + 1

(
√
ε + 1 +

√
ε)2
))]

+ O(τ )

)
. (27)

Subtracting the (again divergent) vacuum (Minkowski space) expectation value〈Ê2
z 〉Minkowski =

limτ→0 h̄c/π
2τ 4 and taking the limit asτ → 0 gives the exact renormalized expectation value:

〈Ê2
z 〉ren= h̄c

(2π)2z4

[
1

16χ3/2

(
2
√
χ(6ε2 − 3ε3/2 − 2χ) + 6ε(1− 2ε2 + 2χ) ln(

√
ε +
√
χ)

+
6ε2(ε2 − χ − 1)√

ε2 − 1
ln

(√
ε + 1− 1√
ε + 1 + 1

(
√
ε + 1 +

√
ε)2
))]

(28)

= h̄cηEz

z4
(29)

say, where the coefficientηEz is a function ofχ .
The renormalized expectations of the squares of the other components can be calculated

by the same techniques. They are given by:

〈Ê2
T〉ren= h̄c

(2π)2z4

[
1

16χ3/2

(
2
√
χ(6− 3

√
ε − 2χ)− 6(1− 2εχ) ln(

√
ε +
√
χ)

− 6ε2χ√
ε2 − 1

ln

(√
ε + 1− 1√
ε + 1 + 1

(
√
ε + 1 +

√
ε)2
))]

(30)

= h̄cηET

z4
(31)

〈B̂2
z 〉ren= h̄c

(2π)2z4

[
1

16χ3/2
(2
√
χ(12− 9

√
ε − 2χ)− 6(1− 2χ) ln(

√
ε +
√
χ))

]
(32)

= h̄cηBz

z4
(33)
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Figure 1. The dependences of the squares of the fields on the susceptibilityχ (the abscissa). The
horizontal line at the top is the common asymptote. Below that, in descending order, areηEz , then
1
2η

E
T , then− 1

2η
B
T , and finally−ηBz .

and

〈B̂2
T〉ren= h̄c

(2π)2z4

[
1

16χ3/2

(
2
√
χ(6 + 6ε2 − 2χ − 3(ε + 2)

√
ε)

+6(ε − 2ε3 + 2χ) ln(
√
ε +
√
χ)

+6ε2
√
ε2 − 1 ln

(√
ε + 1− 1√
ε + 1 + 1

(
√
ε + 1 +

√
ε)2
))]

(34)

= h̄cηBTB

z4
. (35)

These expressions are very complicated, and the characters of the functionsη(χ) will be
investigated in the next section. For the present, we remark that the sucessful renormalization
provides a very strong check on the computations, since the term of orderτ−4 must cancel
perfectly against the term from Minkowski space, and the remaining potential poles inτ (of
ordersτ−3, τ−2 andτ−1) must vanish identically. Another check is provided by the vanishing
of 〈T̂zz〉ren, as will be discussed in section 4.

3. The squares of the fields

In the previous section, we found the expectations of the squares of the fields explicitly. In
each case the result had the form ¯hcη/z4, wherez was the distance to the interface andη was
a complicated transcendental function of the susceptibilityχ . In this section, we present the
graphs of the functionsη, as well as their limiting behaviours forχ ↓ 0 andχ ↑ ∞.

The functionsηE,Bz,T (scaled to have a common limiting value) are presented in figure 1.
They are in each case monotonic and approach a constant value asymptotically, but the approach
is extremely slow.

Forχ ↓ 0, we have

〈Ê2
z 〉ren= h̄c

(2π)2
9

80z4
χ + O(χ2) (36)

〈Ê2
T〉ren= h̄c

(2π)2
7

40z4
χ + O(χ2) (37)



1944 A D Helfer and A S I DLang

〈B̂2
z 〉ren= − h̄c

(2π)2
1

80z4
χ + O(χ2) (38)

〈B̂2
T〉ren= − h̄c

(2π)2
3

40z4
χ + O(χ2). (39)

It is good to observe that all the above expectation values tend to zero asχ ↓ 0 (vacuum).
For ε � 1 (that is,χ ↑ ∞), we find

〈Ê2
z 〉ren= h̄c

16π2z4
− h̄c

(2π)2
3

16z4

1√
ε

+ O(1/ε) (40)

〈Ê2
T〉ren= h̄c

8π2z4
− h̄c

(2π)2
3

4z4

1√
ε

+ O(1/ε) (41)

〈B̂2
z 〉ren= − h̄c

16π2z4
+

h̄c

(2π)2
3

8z4

ln ε√
ε

+ O(1/
√
ε) (42)

〈B̂2
T〉ren= − h̄c

8π2z4
+

h̄c

(2π)2
3

8z4

ln ε√
ε

+ O(1/
√
ε). (43)

We note that in the limitχ ↑ ∞, these quantities attain the values they would have in the
case of the half-space outside a perfectly conducting plane (see, e.g., Barton 1990). This is
in accord with the usual formal identification of perfect conductors with dielectrics of infinite
susceptibility. However, the approach to this limit is rather slow. One needsχ ≈ 102 forηBz
to be within 50% of its limiting value, andχ ≈ 14 400 to be within 10%.

For completeness, we list the limiting behaviours of squares of the full fields:

〈Ê2〉ren= h̄c

(2π)2z4

23

80
χ + O(χ2) (44)

〈B̂2〉ren= − h̄c

(2π)2z4

7

80
χ + O(χ2) (45)

for χ ↓ 0, and

〈Ê2〉ren= 3h̄c

16π2z4
− h̄c

(2π)2z4

23

80

1√
ε

+ O(1/ε) (46)

〈B̂2〉ren= − 3h̄c

16π2z4
+

h̄c

(2π)2z4

3

4

ln ε√
ε

+ O(1/
√
ε) (47)

for χ ↑ ∞.

4. The stress tensor

By symmetry considerations, the expectation of the renormalized stress tensor must be
diagonal. The ‘z’ component of the divergence constraint implies that〈T̂zz〉ren must be
independent ofz; however, as all components must be multiples of 1/z4, this component
must be zero. (The verification that one does get zero using our values of the squares of the
fields provides another check on our calculation.) Since the tensor is trace-free and the ‘xx’
and ‘yy’ components must be equal, there is only one algebraically independent component.
We may take this to be the energy densityρ = 〈T̂tt 〉ren, the other non-zero terms being
〈T̂xx〉ren= 〈T̂yy〉ren= ρ/(2c2).

The renormalized energy density is given by

〈T̂00〉ren= h̄c

(2π)2z4

[
1

16χ3/2

(
2
√
χ(6ε2 + 12− 4χ − 3(ε + 3)

√
ε)

+6(ε − 1− 2ε3 + 2(ε + 1)χ) ln(
√
ε +
√
χ)
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Figure 2. The dependence of the expectation of the energy density on the susceptibility. The
coefficientηρ is plotted as a function of the susceptibilityχ . There is a single maximimum at
χ ≈ 13.65.

+
6ε2(ε2 − χ − 1)√

ε2 − 1
ln

(√
ε + 1− 1√
ε + 1 + 1

(
√
ε + 1 +

√
ε)2
))]

(48)

= h̄cηρ

z4
(49)

say.
The expectation of the energy density has the following limiting behaviours:

for χ � 1 we have

〈T̂00〉ren= h̄c

(2π)2z4

(
χ

10
− 2χ2

35

)
+ O(χ3) (50)

and forε � 1 we have

〈T̂00〉ren= h̄c

(2π)2z4

3

8

ln ε√
ε

+ O(1/
√
ε). (51)

The graph of the coefficientηρ is given in figure 2. It has a single maximum with value
ηρ ≈ 0.0034 atχ ≈ 13.65. The fall-off is again very slow, withηρ still at 50% its maximum
value forχ ≈ 600, and still at 10% its maximum forχ ≈ 60 000.

5. Discussion

We have found that the expectations of the renormalized squares of the components of the
electric and magnetic fields at distancez from a non-dispersive dielectric all have the form
ηh̄c/z4, where the coefficentsη depend on the susceptibilityχ . These coefficients vary linearly
nearχ = 0, and tend monotonically but very slowly to asymptotic constant values asχ ↑ ∞.
For the electric field components, one hasη > 0; while for the magnetic field one hasη < 0.
For the energy density, the corresponding coefficientηρ rises linearly nearχ = 0, attains a
maximum atχ ≈ 13.65, and then falls very slowly to zero asχ ↑ ∞.

Previous authors have considered the quantum optical effects of a non-dispersive dielectric
half-space on atomic transition rates (e.g., Khosravi and Loudon 1991, 1992). Those results
are in some sense complementary to these: those test the field operators over a small range of
frequencies, whereas the present ones depend on integrating over all frequencies. The present
results depend crucially on the successful ultraviolet renormalization of the theory.
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5.1. Casimir–Polder Forces

An immediate consequence of these formulae is a prediction for the Casimir–Polder force
on a polarizable atom near a dielectric. If the polarizability isα(ω), then the induced dipole
is
∫
α(ω)Ê(ω) dω, and the potential energy is−(∫ α(ω)Ê(ω) dω) · Ê. If in the regime in

question we may neglect the frequency-dependence of the polarizability, then, in the vacuum
state of the electromagnetic field the potential energy is the vacuum state of the electromagnetic
field, this becomes

−α〈Ê2〉ren= −αh̄cηE/z4 (52)

whereηE = ηEz +ηET . In principle, a parallel treatment applies to derive a ‘magnetic Casimir–
Polder’ force depending on magnetic polarizability.

The Casimir–Polder force on a polarizable atom near a conductor has been measured
in recent years (Sukeniket al 1993), although as yet there has been no measurement near a
dielectric.

5.2. Relation to consitutive energy

One of our main motivations for studying this model was to uncover its limitations. We noted
early on that a real physical dielectric cannot be well approximated as a uniform medium on
arbitrarily small scales. This means that we cannot expect our model to accurately capture
the physics of the field modes whose wavelengths are less than the atomic scale (certainly) or
the skin depth (probably). In particular, our predictions must break down as one gets within a
distance of this order of the interface.

One vivid manifestation of this is the electromagnetic field energy of the vacuum half-
space, per unit surface area. This surface energy density is∫ ∞

0
(ηρh̄c/z

4) dz (53)

which isdivergentat the lower limit. (For an earlier investigation of a closely related effect,
see Bordag and Lindig 1996.) It is not physically plausible that this energy density diverges;
rather, the divergence reflects an improper model of physics near the interface. A more correct
version would have the form

local contribution near interface +
∫ ∞
δ

(ηρh̄c/z
4) dz (54)

whereδ is of the order of the skin depth.
The energies we are considering here represent electromagnetic contributions to the

constitutive energy of the medium. (In a more realistic treatment, it might not be meaningful
to isolate one class of electromagnetic contributions from others, however.) It is plausible that
these depend very much on the chemical physics of the material, and so the vagueness in the
form (54) is apt. The numerical value of the contribution from the second term in (54) is quite
modest for everyday materials. Taking the rather small valueδ ≈ 10Å andηρ = 0.003, we
find ηρh̄c/(3δ3) ∼ 3× 10−4 cal cm−2.

5.3. The fields in the dielectric

In this paper, we have only treated the electromagnetic field in the vacuum half-space outside
the dielectric. This case would seem to be of more interest than the field within the dielectric.
Still, it is natural to ask what would happen there.



The electromagnetic field near a dielectric half-space 1947

In principle, techniques like ours should apply to compute the operatorsD̂ = εÊ andB̂
within the dielectric. The integrals involved are more difficult than those on the vacuum side,
though.

Aside from technical difficulties in evaluating the integrals, there is another point which
must be considered in the dielectric region. In that region, the ultraviolet asymptotics of the
two-point functions are different than in Minkowski space. (Because the two-point functions
are singular on characteristics, and there is a different speed of light in the dielectric medium.)
This means that the renormalization cannot be accomplished by subtracting the Minkowski-
space vacuum quantities. One could presumably renormalize by subtracting the quantities
associated to a uniform dielectric. If one does this, then the local energy density differs from
that of Minkowski space by an infinite amount.

We believe the resolution to this point is the same as that discussed in the previous
subsection. One cannot accept the present model as an accurate picture of physics at all
scales, and it is really only to be considered as an effective field theory, valid for frequencies
below some cut-off. The difference in energy densities should be finite, with one contribution
due to the effective field theory with a cut-off, and another due to the details of the chemical
physics of the medium.

5.4. Sign of the energy density

One of our motivations for this work was to get a better understanding of the negative energy
density occuring in the Casimir effect.

The Casimir effect—corresponding to two parallel plane conductors—isformallythe limit
asε ↑ ∞ of two parallel dielectric half-spaces. However, this identification only holds at the
limit, and only in the sense that in this case the reflections and refractions of the field modes
at the dielectric interfaces approach the perfect-conductor boundary conditions asε ↑ ∞.
A real conductor, with finite conductivity, has a dielectric function which is significantly
dispersive and absorptive, and cannot be modelled by a constant large real positiveε. Thus
our present model cannot make any positive quantitative predictions about the Casimir effect
for conductors.

However, we shall show that at least for dielectrics, the effects of a finiteε cannot be
ignored, and that in realistic situations it seems most likely that the total expected energy
density, including separation-independent contributions from the half-spaces, ispositive. This
suggests strongly that we must investigate the real physics of conductors before we can conclude
that the total expected energy density between the plates is negative.

Consider two non-dispersive half-space dielectrics, of the same susceptibility, parallel and
separated by a distancel. Then the total energy (per unit cross-sectional area) will have the
form

Etot = E∞ + η2h̄c/ l
3. (55)

The functionη2(χ) has been computed by Lifshitz (1956). HereE∞ is (twice) the energy of
either dielectric in isolation.

For the energy density, letz with −l/2< z < l/2 be a coordinate normal to the interface
planes. Then near either interface one expects the energy density to be dominated by the
physics of that interface, and so to be∼ ηρh̄c/(z ± l/2)4, whereηρ(χ) is the coefficient we
computed previously, equation (48). We shall write these two contributions asρ1(z) andρ2(z).
The total energy density will be

ρtot(z) = ρ1(z) + ρ2(z) + ρCas(z, l) (56)
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whereρCas(z, l) must on dimensional grounds have the formf (z/l)/ l4, and be less singular
at the interfaces thanρ1, ρ2. Indeed, the integral

∫ l/2
−l/2 f (z/l)dz = η2l/(h̄c) must be finite.

Thusf has, at most, mild singularities at the interfaces.
The form of the functionf is at present unknown. As a very rough approximation, we

shall assume it is constant inz/l, that is, the ‘Casimir’ contribution to the expected energy
density is uniformly distributed between the half-spaces. We may ask if this value dominates
the contributionρ1 +ρ2 from the dielectrics, that is, ifρtot is positive or negative. This question
can be answered by comparing our results with those of Lifshitz (1956), who computed the
force of attraction of the two dielectrics. We find numerically that the energy densityρ1 + ρ2

dominates the average energy density unlessχ & 39 000. In other words, if the ‘Casimir’
contribution to the energy density is distributed uniformly, the total energy density would be
everywhere positive between the half-spaces unlessχ could be made to exceed≈39 000.

A real dielectric exhibits absorption and dispersion; we can expect our model to be valid at
distances of orderz if the dielectric susceptibility is (nearly) a real positive constant for several
orders of magnitude of frequency bracketingc/z. There seems to be nothing in the Kramers–
Kronig relations preventing this from holding for the sorts of values ofχ discussed above.
Still, the scales are extreme enough that one wonders whether such susceptibility functions are
more mathematical curiosities than physical possibilities. In other words, unless remarkable
materials exist, withχ(ω) approximately a real positive constant&39 000 for several orders
of magnitude ofω, it seems unlikely the total expected energy density anywhere between the
dielectric half-spaces will be negative.

We should like to emphasize that while the contributions from the dielectrics probably
make the energy density positive, their separation-independence ensures that they do not alter
the usual predictions of the attractive force between the dielectrics. Indeed, we have used
Lifshitz’s results in our argument, and we accept his values for the force.

6. Conclusion

Negative energy densities were first discovered in quantum field theory with Casimir’s
prediction of an attractive force between two parallel perfect plane conductors. Since then,
there has been considerable speculation on what the physical consequences of these negative
energy densities might be.

The present model was introduced as a first step away from the idealization of boundary
conditions induced by a dielectric of infinite susceptibility. It has been chosen for its relative
mathematical simplicity, and it is unrealistic in that it neglects dispersion and absorption. Still,
we find that the effects of finite-susceptibility contributions go asε−1/2 ln ε and can be very
significant: in the range that our model is likely to be valid, it seems that these contributions
can make thetotalenergy density between two dielectric half-spaces positive, while preserving
the attractive force found by Lifshitz.

One cannot, from our model, draw any definite conclusion about the behaviour of the
energy density between two real conducting plates. What sorts of separation-independent
corrections there are, due to finite conductivity, are at present unknown. But it does seem
clear that we will only be justified in having confidence in theoretical predictions of the energy
density between two real conducting plates if we take into account finite-conductivity effects.
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